Skyrme functional and halo systems - CEA-Irfu
Transcription
Skyrme functional and halo systems - CEA-Irfu
Skyrme EDF and halos K. Bennaceur Skyrme functional and halo systems V. Rotival1,2 , K. Bennaceur3 , T. Duguet2,4 1 DPTA/SPN - CEA/DAM Île-de-France - Bruyères-le-Châtel, France 2 NSCL, East Lansing, MI, USA Dep. of Physics and Astronomy, Michigan State University, East Lansing, USA 3 Institut de Physique Nucléaire de Lyon, CNRS–IN2P3 Université Claude Bernard Lyon 1 4 CEA, Centre de Saclay, IRFU/SPhN, Gif-sur-Yvette, France ESNT Workshop, Saclay, May 18–20, 2009 Introduction Conditions for halo formation Quantitative tools Application to the Skyrme EDF Conclusion Outline Skyrme EDF and halos K. Bennaceur Introduction Conditions for halo formation ■ Halo nuclei and mean field models Quantitative tools ■ Quantitative tools to characterize halo Application to the Skyrme EDF Conclusion ■ Effective interaction in ph and pp channels ■ Systematic search among spherical nuclei ■ Conclusion Overview on halo nuclei Skyrme EDF and halos K. Bennaceur Introduction ■ Unusual spatial extension Conditions for halo formation Quantitative tools “An atomic nucleus is called a halo nucleus or is said to have a nuclear halo if its radius is appreciably larger than that predicted by the liquid drop model.” ⇒ How large is “appreciably larger” ? ■ Small one particle separation energy, role of low ℓ states ⇒ Couplings to continuum states ⇒ Sensitive to the spectroscopic details of the interaction ■ Coulomb effects ■ Importance of pairing correlations Application to the Skyrme EDF Conclusion Need for quantitative criteria Skyrme EDF and halos K. Bennaceur What about the Helm model ? (S. Mizutori et al., PRC 61, 044326) Introduction Conditions for halo formation ■ Radius of the realistic density Rr.m.s. = H ■ Radius of the Helm density Rr.m.s. = sR sR R R ρ (r)r 4 dr ρ (r)r 2 dr ρH (r)r 4 dr = ρH (r)r 2 dr R0 and σ extracted from the microscopic form factor ■ Geometric r rand Helm radii: 5 5 H Rr.m.s. and RHelm = R Rgeom = 3 3 r.m.s. ( ∆Rskin = RHelm (n) − RHelm (p) ∆Rhalo = Rgeom (n) − RHelm (n) Quantitative tools Application to the Skyrme EDF r 3 R02 + 5σ 2 5 Conclusion Need for quantitative criteria Skyrme EDF and halos K. Bennaceur What about the Helm model ? (S. Mizutori et al., PRC 61, 044326) N 30 6.0 5.8 R [fm] 5.6 34 38 42 46 50 R geom (n) R Helm (n) R geom (p) R Helm (p) ■ Radius of the realistic density Rr.m.s. = sR 5.4 5.2 5.0 ■ H Radius of the Helm density Rr.m.s. = 4.8 4.6 54 Cr sR R R ρ (r)r 4 dr ρ (r)r 2 dr ρH (r)r 4 dr = ρH (r)r 2 dr R0 and σ extracted from the microscopic form factor 58 62 66 70 74 78 R [fm] A ■ Geometric Helm radii: r rand N 5 90 5 H 50 70 110 R and R = R Rgeom = r.m.s. Helm R geom (n) 7.2 3 3 r.m.s. 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 100 R Helm (n) R geom (p) R Helm (p) ( ∆Rskin = RHelm (n) − RHelm (p) ∆Rhalo = Rgeom (n) − RHelm (n) Sn 120 140 A 160 Introduction Conditions for halo formation 54 Quantitative tools Application to the Skyrme EDF r 3 R02 + 5σ 2 5 Conclusion Need for quantitative criteria Skyrme EDF and halos K. Bennaceur What about the Helm model ? (S. Mizutori et al., PRC 61, 044326) N 30 6.0 R [fm] 5.6 38 42 46 50 10 0 54 R geom (n) R Helm (n) R geom (p) R Helm (p) 10 ■ Radius of the realistic density Rr.m.s. = (r) [fm -3 ] 5.8 34 5.4 5.2 5.0 ■ H Radius of the Helm density Rr.m.s. = 4.8 4.6 54 Cr Conditions for halo formation sR -2 -4 10 s R R 10 -6 R ρ (r)r 4 dr ρ (r)r 2 dr 54 62 66 70 74 78 p Helm 0.0 4.0 100 R Helm (n) R geom (p) R Helm (p) ( (r) [fm -3 ] R [fm] A ■ Geometric Helm radii: r rand 0 N 5 90 5 10H 50 70 110 R and R = R Rgeom = r.m.s. Helm r.m.s. R geom (n) 7.2 3 3 -2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 Quantitative tools Application to the Skyrme EDF (r)r 4n dr ρH Cr = n dr ρH (r)r 2pHelm R0 and σ extracted from the microscopic 10 -8 form factor 58 r 3 R02 + 5σ 2 5 8.0 12.0 r [fm] 10 ∆Rskin = RHelm (n) − 10 -4RHelm (p) 80 Cr n ∆Rhalo = Rgeom (n) − R (n) 10 -6 Helm n Helm p Sn 120 140 A 160 Introduction 10 -8 0.0 p Helm 4.0 8.0 r [fm] 12.0 Conclusion Core and halo from the one-body density in one slide Skyrme EDF and halos (2 +1)| _ (r)| 2 [fm -3 ] K. Bennaceur = = = = = = 10 -2 10 -4 10 -6 0 1 2 3 4 5 Introduction States with s.p.e. -100 keV in a Conditions for halo formation spherical potential with radius 4 fm Quantitative tools Application to the Skyrme EDF 10 -8 Conclusion 10 -10 0 5 10 15 20 r [fm] 25 30 35 Core and halo from the one-body density in one slide Skyrme EDF and halos (2 +1)| _ (r)| 2 [fm -3 ] K. Bennaceur = = = = = = 10 -2 10 -4 10 -6 0 1 2 3 4 5 Introduction States with s.p.e. -100 keV in a Conditions for halo formation spherical potential with radius 4 fm Quantitative tools Application to the Skyrme EDF 10 -8 Conclusion 10 -10 0 5 10 15 20 25 30 35 r [fm] Halo Core Total [fm -3 ] 10 0 State with smallest binding energy dominates at large distance 10 -2 10 -4 State with the smallest binding energy: 10 -6 10 has nodes ⇒ smaller amplitude inside than nodeless states -8 10 -10 0 5 10 r [fm] 15 20 or has ℓ > 0 ⇒ smaller amplitude inside than ℓ = 0 states or the nucleus is hydrogen... Core and halo from the one-body density in one slide Skyrme EDF and halos (2 +1)| _ (r)| 2 [fm -3 ] K. Bennaceur = = = = = = 10 -2 10 -4 10 -6 0 1 2 3 4 5 Introduction Conditions for halo formation Quantitative tools Application to the Skyrme EDF 10 -8 Conclusion 10 -10 0 5 10 15 20 25 30 35 r [fm] Halo Core Total [fm -3 ] 10 0 10 -2 10 -4 10 -6 10 -8 10 -10 0 5 10 r [fm] 15 20 Core and halo from the one-body density in one slide Skyrme EDF and halos (r)| 2 [fm -3 ] K. Bennaceur = = = = = = 10 -2 10 -4 (2 +1)| _ 10 -6 Introduction 0 1 2 3 4 5 Conditions for halo formation Quantitative tools Application to the Skyrme EDF 10 -8 Conclusion 10 -10 0 5 10 15 20 25 30 35 r [fm] Halo Core Total 0.00 -0.28 -0.56 10 -2 0.00 10 -4 log 10’ [fm -3 ] 10 0 log 10’’ 0.28 10 -6 -0.56 -1.12 -1.68 10 -8 10 Halo Core Total 10 0 -10 0 5 10 15 20 r [fm] ρcore (r0 ) ∼ 1 × ρhalo (r0 ) 10 10 -2 10 -4 10 -6 10 -8 0 5 10 r [fm] 15 20 The halo region Skyrme EDF and halos K. Bennaceur r0 > rmax such that ∂ 2 log ρ (r) ∂ r2 r0 2 ∂ 2 log ρ (r) = 5 ∂ r2 rmax Error bars provided by ∂ 2 log ρ (r) ∂ 2 log ρ (r) ∂ 2 log ρ (r) 0.35 × 6 6 0.5 × ∂ r2 ∂ r2 ∂ r2 rmax r0 rmax Introduction Conditions for halo formation Quantitative tools Application to the Skyrme EDF Conclusion The halo region Skyrme EDF and halos K. Bennaceur r0 > rmax such that ∂ 2 log ρ (r) ∂ r2 r0 2 ∂ 2 log ρ (r) = 5 ∂ r2 rmax Error bars provided by ∂ 2 log ρ (r) ∂ 2 log ρ (r) ∂ 2 log ρ (r) 0.35 × 6 6 0.5 × ∂ r2 ∂ r2 ∂ r2 rmax r0 rmax Nhalo = 4π Participating nucleons : Z +∞ r0 ρ (r) r 2 dr Nuclear extension : δ Rhalo = = Rrms, tot sR +∞ R0+∞ 0 ρ (r) r 4 dr ρ (r) r 2 dr − Rrms, inner sR r0 ρ (r) r 4 dr R0r0 − 2 0 ρ (r) r dr Introduction Conditions for halo formation Quantitative tools Application to the Skyrme EDF Conclusion Benchmarks Skyrme EDF and halos K. Bennaceur ■ Coupled-channels calculations (F. Nunes et al.) for Introduction (halo nucleus) 11 Be and (stable) 13 C: core + neutron CC calculation provides with core, neutron and total densities Conditions for halo formation Quantitative tools 10 -2 10 -4 13 10 -6 11 11 Be 10 -8 10 -10 0 5 10 C Be Nhalo 0.000 0.000 Core δ Rhalo 0.000 0.000 (fm) Nhalo 7 10−4 0.270 Total δ Rhalo 7 10−4 0.394 (fm) 15 r [fm] ■ Mean-field (SLy4) calculations for Cr isotopes N 30 34 38 42 46 50 54 Cr 0.14 74 Cr 0.12 R halo [fm] [fm -3 ] 10 Halo Core Total 0 0.10 76 0.08 80 Cr 0.04 0.02 0.00 Cr 78 Cr 0.06 54 58 62 66 A 70 74 78 Nhalo 0.000 0.057 0.194 0.472 δ Rhalo (fm) 0.000 0.018 0.055 0.134 Rr.m.s. 2.487 2.908 (fm) Application to the Skyrme EDF Conclusion Application: Skyrme EDF calculations for spherical nuclei Skyrme EDF and halos K. Bennaceur Introduction Conditions for halo formation ■ Which particle-hole interation ? ■ Which particle-particle interation ? Quantitative tools Application to the Skyrme EDF Conclusion ■ Which nuclei ? Skyrme EDF: particle-hole channel Skyrme EDF and halos K. Bennaceur Functional for spherical nuclei Introduction h̄ 2 ∆ρ ρ E = τ0 + ∑ Ct ρt2 + Ct ρr ∆ρt + Ctτ ρt τt + CtJ J2t + Ct∇J ρt ∇ · Jt 2m t=0,1 Conditions for halo formation Quantitative tools Application to the Skyrme EDF SLy4 SIII m∗ 1 1 ρsat 2 ρsat 3 ρsat T6 SKa T21-T26 ρsat 0.160 0.145 0.162 0.145 0.160 0.175 0.161 0.155 0.161 K∞ 230 355 230 230 230 230 236 263 230 m ∗ /m 0.70 0.76 1.00 0.70 0.70 0.70 1.00 0.61 0.70 κv 0.25 0.53 0.25 0.25 0.25 0.25 0.00 0.94 0.25 Conclusion E/A -16.97 -15.85 -16.07 -15.69 -15.99 -16.22 -15.93 -15.99 -16.00 + VT Skyrme EDF: particle-particle channel Skyrme EDF and halos K. Bennaceur Functional (pp part) for spherical nuclei " ′# V0 ρ0 α ˜ E = 1−η ∑ ρ̃q2 4 ρsat q=n,p ■ V0 overall strength, Conditions for halo formation Quantitative tools Application to the Skyrme EDF Conclusion ■ η = 0 → volume pairing ...to... η = 1 → surface pairing, ■ α ′ < 1 stronger pairing at low density. Overall strength : h∆in = 1.250 MeV in Introduction 120 Sn Zero range interaction ⇒ divergence of the energy ■ “Regularization” using a cutoff (60 MeV), ■ “Renormalization” (A. Bulgac recipe) Strength of the pairing interaction Skyrme EDF and halos K. Bennaceur (Used on top of SLy4) 0 Introduction Conditions for halo formation Quantitative tools V 0 [MeV] -2000 Application to the Skyrme EDF Conclusion -4000 -6000 0.0 REG-X REN-X 0.5 Are all these interactions satisfying ? 1.0 0.5 ... No. η = 1/2 seems to be a good choice (Dobaczewski et al., nucl-th/0109073) “REG”ularized interactions sometimes suspicious at low density... Regularized surface pairing interactions Skyrme EDF and halos Surface pairing interaction strong at low density, exotic nucleus, box big enough, enough partial waves... then =1.0 =1.0 =1.0 =1.0 =1.0 10 -2 =1.0 =0.8 =0.6 =0.4 =0.2 Quantitative tools Application to the Skyrme EDF Conclusion 10 -4 n (r) [fm -3 ] Introduction Conditions for halo formation 10 0 10 -6 10 -1 10 -3 n (r) [fm -3 ] K. Bennaceur 10 -5 80 0 Cr 5 10 15 20 25 30 35 40 r [fm] ... the halo hits the fan. Renormalized surface pairing interactions Skyrme EDF and halos K. Bennaceur Introduction Conditions for halo formation ■ No suspicious results for nuclei ■ Correct gap equation in nuclear matter Quantitative tools Application to the Skyrme EDF Conclusion ■ No cutoff... one parameter less. Convergence of the results Skyrme EDF and halos If calculations are converged for 80 Cr, they will be for any nucleus... K. Bennaceur Introduction Quantitative tools R halo R halo 0.40 0.40 Application to the Skyrme EDF Conclusion N halo 0.50 N halo 0.50 0.30 0.30 0.20 0.20 0.10 0.00 15 Conditions for halo formation 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 80 25 35 45 R box [fm] 55 Cr 65 0.10 0.00 15 80 25 35 45 2J max 55 Cr 65 Convergence of the results Skyrme EDF and halos If calculations are converged for 80 Cr, they will be for any nucleus... K. Bennaceur Introduction Conditions for halo formation 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 Quantitative tools R halo R halo 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0.00 0.40 0.40 Conclusion N halo 0.50 N halo 0.50 Application to the Skyrme EDF 0.30 0.30 0.20 0.20 0.10 80 0.00 15 25 35 45 0.10 Cr 55 80 0.00 15 65 25 35 R box [fm] 55 Cr 65 2J max 0.4 J max =15/2 J max =31/2 J max =65/2 0.3 P nv 2 80 Cr 0.2 J max =15/2 J max =31/2 J max =65/2 0.3 80 P nuv 0.4 Cr 0.2 0.1 0.0 45 0.1 1 7 13 19 25 2j 31 37 43 0.0 1 7 13 19 25 2j 31 37 43 Results: impact ph functional Skyrme EDF and halos K. Bennaceur Introduction 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.21 0.18 0.15 0.12 0.09 0.06 0.03 0.00 e i [MeV] R halo N halo Conditions for halo formation Quantitative tools Application to the Skyrme EDF Conclusion 0 s1/2 d5/2 -3 g9/2 -6 -9 SLy4 T6 Ska SIII m *1 1 sat 2 sat 3 sat 80 T21 Cr T22 T23 T24 T25 T26 Results: Large scale analysis Nhalo Skyrme EDF and halos K. Bennaceur 500 “Spherical” nuclei ⇐ |β2 | < 0.1 with D1S Introduction Conditions for halo formation 100 Quantitative tools 0.70 80 Application to the Skyrme EDF Conclusion 0.56 60 Z 0.42 0.28 40 0.14 20 N halo 0 0 40 80 120 N 160 0.00 Results: Large scale analysis δ Rhalo Skyrme EDF and halos K. Bennaceur 500 “Spherical” nuclei ⇐ |β2 | < 0.1 with D1S Introduction Conditions for halo formation 100 Quantitative tools 0.16 80 Application to the Skyrme EDF Conclusion 0.12 Z 60 0.08 40 0.04 20 R halo 0 0 40 80 120 N 160 0.00 Results: Large scale analysis Skyrme EDF and halos K. Bennaceur 100 Introduction 100 0.70 80 0.16 Conditions for halo formation 0.12 Quantitative tools 0.08 Application to the Skyrme EDF 80 0.56 60 60 Z 0.42 0.28 40 40 0.04 0.14 20 20 N halo 0 R halo 0.00 0.00 0 0 40 80 120 160 0 40 N 80 120 160 N ■ Several isotopic chains are predicted to display neutrons halos; ■ Halos are predicted to exist only at the very limit of stability; ■ The maximum value of Nhalo is about 0.7; ■ Nhalo decrease with mass between Z=20 and Z=100; ■ Nhalo has almost no influence on the nuclear extension of massive nuclei. Remember: I only talk about spherical even-even nuclei... Conclusion Conclusion: Best halo candidates Skyrme EDF and halos K. Bennaceur Introduction N halo 0.6 Conditions for halo formation 0.4 Quantitative tools 0.2 0.0 0.18 R halo Application to the Skyrme EDF Conclusion 0.12 0.06 0.00 0 eni [MeV] s, p, or d states -3 -6 -9 84 Fe 80 Cr 88 Ni 86 Ni 140 Pd 136 Ru 78 Cr Conclusion: Best halo candidates Skyrme EDF and halos K. Bennaceur Introduction N halo 0.6 Conditions for halo formation 0.4 0.2 Quantitative tools 0.0 0.18 R halo Application to the Skyrme EDF 0.12 Conclusion 0.06 0.00 0 eni [MeV] h ac e r of g... t ou e lon ly al efor t b To -3 -6 -9 84 Fe 80 Cr 88 Ni 86 Ni 140 Pd 136 Ru 78 s, p, or d states Cr Work done in collaboration with Skyrme EDF and halos K. Bennaceur Introduction T. Duguet V. Rotival CEA/IRFU - MSU/NSCL CEA/DPTA - MSU/NSCL + thanks to F. Nunes, T. Lesinski and J. Mitroy. Conditions for halo formation Quantitative tools Application to the Skyrme EDF Conclusion • New analysis method of the halo phenomenon in finite many-fermion systems: First applications to medium-mass atomic nuclei, V. Rotival and T. Duguet, Phys. Rev. C 79, 054308 (2009). • Halo phenomenon in finite many-fermion systems: Atom-positron complexes and large-scale study of atomic nuclei, V. Rotival, K. B. and T. Duguet, Phys. Rev. C 79, 054309 (2009). Surface pairing in very exotic nuclei Skyrme EDF and halos K. Bennaceur 0.0 0.0 -0.5 -0.5 [MeV] 0.5 150Sn -1.0 -1.5 ULB DFTS RDFTS DFTS+v2 -2.0 -2.5 N(r) N(r) [MeV] Introduction 0.5 Conditions for halo formation Quantitative tools 170Sn -1.0 ULB DFTS RDFTS DFTS+v2 -2.0 -2.5 -3.0 Application to the Skyrme EDF -1.5 Conclusion -3.0 -3.5 -3.5 0 2 4 6 8 r [fm] 10 12 14 16 0 2 4 6 8 r [fm] 10 12 14 ULB : cutoff at 5 MeV above the Fermi energy DFTS : cutoff at ∼ 60 MeV above the Fermi energy 16 Nulear Struture Near the Limits of Stability | Nulear density-funtional theory { INT-05-3