Diann Prosser USGS Patuxent Wildlife Research Center
Transcription
Diann Prosser USGS Patuxent Wildlife Research Center
Diann Prosser USGS Patuxent Wildlife Research Center & University of Maryland Marius Gilbert & Thomas Van Boeckel Université Libre de Bruxelles Marius Gilbert & Thomas Van Boeckel, Université Tim Robinson, United Nations Food and Agriculture Organization William Wint, Environmental Research Group Oxford HPAI risk modeling, China: d li Chi Chickens, Ducks, Geese Monsoon Asia Monsoon Asia ‐ DUCKS Gridded Livestock of the World (GLW), 1km 99 ‐data from 1990’s ‐not at species level United Nations FAO FARMS v1.0: FAO Analysis and Regression Mapping g pp g System FARMS v1.0: FAO Analysis and Regression Mapping System Obtain Total Poultry Obtain provincial chicken, Statistics from duck, goose numbers from b k AHB 2006 Census C NSB yearbooks Obtain Input D t Data -Fill gaps in observed data -Calculate species ratios from AHB ‘06 Census C p -Convert to ggeospatial format Poultry Data Prep -Mask unsuitable areas for each species -Calculate adjusted observed poultry densities Suitability Masking -Stratified Random Sampling (n≈95,000) -Extract values for 25 bootstrap datasets -Define stratification methods for regressions Sampling & Stratifications -Logg transform dependent p variables, add quadratic equation for predictor covariates -Stepwise regression, AIC model selection (1 global model, separate models for each stratification method, Fig S3) AIC Stepwise Regression Analysis -Disaggregate species estimates using regression coefficients from regressions -Predict species densities at 1km resolution Poultry Predictions -Compare output for stratification methods and Model predictor sets using Goodness of Fit indicators on observed versus predicted values: root mean Comparison & Validation square error (RMSE) and Correlation -Validate model using independent dataset Country Obtain Data China Admin Level Hybrid1‐3 Source 2004 NSB and MOA AHB, 2006 Census Cambodia 1 DAHP 2003 Census Bhutan 1 Bhutan Ministry of Agriculture Thailand 3 2004 Dept. of Livestock 4 p Development p Lao 1 1999 Ministry of Agriculture and Forestry Vietnam 3 2001 Agricultural Census Database, MOA M Myanmar 2 2006 6 Myanmar Animal Census M A i l C Bangladesh 3 Bangladesh Dept. of Livestock Services India 2 2003 Agricultural Census Nepal 3 Dept. of Livestock Services Korea 1 2004 Ministry of Agriculture and Forestry Malaysia 1 2004 Dept. of Veterinary Services Philippines 2 2002 Agricultural Census Indonesia Hybrid1‐2 2005 Statistik Patemakan 2006 Data Prep Residual Poultry (RESID), 10K head 70000 60000 NSB 50000 40000 30000 20000 10000 0 0 10000 20000 30000 40000 AHB 50000 60000 70000 1) National Statistics Bureau 2) MOA Animal Husbandry Bur. Data Prep Data Prep Human Population Tian 2000 Rice Paddy Agriculture (in white) Percent of Total 100 80 Data Prep 60 40 20 Using 2006 Agricultural Census Data (unreleased) 0 Chi k Chickens Ducks Percent of Total Zhejiang Sichuan Fujian Jiangxi D k Ducks G Geese Suitability Masking Criterion Map Layer Protected areas Population density (Landscan) (km') Lights (Landscan) (%) Elevation (m) Original GLW Mask P lt Pi Poultry+Pigs Chickens Ducks/Geese Y N N 1,500 > N N > 90 N N > 4,750 > 4,750 > 4,750 N <0.07 NDVI max Land cover (Landscan) ‐water Y Y N Land cover (Landscan) ‐developed Y N N Land cover (Landscan) ‐partly developed Y N N Land cover (Landscan) –herbaceous wetlands Y N N L d Land cover (Landscan) ‐wooded wetlands (L d ) d d tl d Y N N Land cover (Landscan) ‐tundra Y Y Y Land cover (Landscan) ‐snow and ice Y Y Y Chickens Chickens Adjusted Observed Data Ducks Geese Geese Modeling Æ 1km resolution distribution maps k l i di ib i Modeling Explore Effects of: 1) Different predictor sets (for China models only) 2) Different stratification schemes for regression models Sampling and Stratification MODIS TFA Channels (Scharlemann et al. 2008) Channels 03, 07,08,14,15,35 Ch l 8 mx,mn,d1,d2,d3,da,a1,a2,a3,p1,p2,p3 produced by SEEG, University of Oxford Human Population Density (GRUMP) MODIS h MODIS phenology l ( (greenup, senescence) ) Length of Growing Period Distance to Land Suitable for Ruminants (by ERGO) Distance to Land Suitable for Monogastrics (by ERGO) Di t Distance to Major Roads (by ERGO) t M j R d (b ERGO) Distance to Sea, Major Lakes, and Rivers (by ERGO) Distance to GRUMP Urban Areas (by ERGO) Travel Time to Major Cities (European Comm. GEM) A Annual Precipitation (WorldClim) l P i it ti (W ldCli ) Elevation (SRTM) Slope (GTOPO30) *ERGO = Environmental Research Group Oxford *SEEG = Spatial Epidemiology and Ecology Group, University of Oxford Land Cover (CAS 2000) Cropping Intensity (Hua et. al. 2009) Human Population Density (Tian 2005) Elevation (SRTM) Slope (GTOPO30) Sampling and Stratification Build models within stratification zones Sampling and Stratification MODIS Clusters, Asia 5, 12, 25, and 50 clusters Global Livestock Production Systems (Sere and Steinfeld 1996) China Agro‐Ecological Regions (Verburg and Chen 2000) Northeast Northwest North Plateau East Southwest Central South China Agro‐ecological Regions, Verberg & Chen 2000 EZ SAS CAR BestALL – uses prediction value from stratification output with best fit Sampling and Stratification China Admin. Boundaries (a) Equal Density Random Sampling (b) 3 points/polygon Sampling (c) C Combined bi d Sampling S li 0.002 pt / km2 0 002 pt / km2 AND 1 pt by polygon (d) Regression AIC Model stops under 3 conditions: p ‐AIC score improves less than 1% ‐less than 15 unique points per variable pair ‐maximum number of pairs to enter model is 20 Data Prep For each Predictor Set and S Stratification Method: ifi i M h d 25 bootstrap layers Mean and Coefficient of Variation Compare Output Multiple Predictors and Stratifications Which is best? Compare Output Goodness of Fit Metrics between Predicted and Observed Values: 1. Root Mean Square Error (RMSE) q ( ) 2. Correlation ( ) g Lower Error (RMSE) and Higher Correlation indicate better fits a. Using 25% reserved sample points g b. On log transformed values Compare Output Ez5 Ez12 Ez25 Ez50 SaS 0.80 0 0.75 0.70 0.64 0.60 0.56 RMS SE (Log10 scale)) 0.68 Correlation coefficient (Log10 scale) Monsoon Asia Ez5 *S d St i f ld LPS *Sere and Steinfeld Ez12 Ez25 Ez50 SaS 0.56 0.58 0 0.60 0.6 62 B.RSE HRB.RSE B.R2 HRB.R2 0.76 0.78 0.80 0.82 Correlation coe efficient (Log10 sca ale) 0.54 RMSE (Log10 scale) Compare Output Monsoon Asia F.Ez B tALL BestALL B.RSE HRB.RSE B.R2 HRB.R2 F.Ez Compare Output China Species Predictor Set Stratification Chickens GLW+LU, LU SAS, BestALL Ducks GLW+LU, GLW BestALL, CAR, SAS Geese GLW+LU CAR, BestALL Compare Output P<0.001 .58 .60 P<0.001 .59 Mean Correlation M Mean RMSE M .57 .56 .55 .54 .58 58 .57 .56 .55 .54 .53 P<0.001 .53 BestALL BestEZ CAR SAS None BestALL Tukey’s Multiple Comparisons (family error rate 0.05): P<0.001 for all comparisons against NO STRATIFICATION BestEZ CAR SAS None Data Prep Mean of 25 BestALL bootstraps Coefficient of Variation Compare Output G Geese Chickens 0‐25 25‐50 50‐100 100‐250 250‐500 500‐1000 1000‐2500 2500‐10000 10000‐10270 Compare Output 0‐25 25‐50 50‐100 100‐250 250‐500 Observed 500‐1000 1000‐2500 2500‐10000 10000‐10270 Compare Output -0.2 0.0 0.2 0.4 0.6 0.8 on Coefficient (L Log10 scale) Correlatio Compare Output BGD BTN CHN IDN IND KHM KOR LAO MMR MYS NPL PHL THA VNM ‐We now have species level spatial distributions ready for H5N1 modeling (1km resolution) ‐And a mechanism for updating predictions (FARMS) Ducks, Monsoon Asia Ducks, China Chickens 0‐25 25‐5 50‐10 100‐ 250‐ 500‐ 1000 2500 1000 Geese