Übungsblatt 15
Transcription
Übungsblatt 15
Übungsblatt 15 Analysis II, FS15 Ausgabe Mittwoch, 3. Juni. Das Blatt dient als Wiederholung von Teilen des Analysis II Vorlesungsstoffs. Keine Abgabe, Musterlösungen werden online gestellt. Übung 1. Seien p, q > 0. Wir definieren eine Funktion f : R2 → R, sodass ( f (x, y) = xp y q , x2 −xy+y 2 (x, y) 6= (0, 0). 0, (x, y) = (0, 0). (i) Zeigen Sie, dass für jede (x, y) ∈ R2 gilt |xy| ≤ x2 − xy + y 2 . (ii) Untersuchen Sie die Stetigkeit von f im Punkt (0, 0). (iii) Ist die Funktion differenzierbar an der Stelle (0, 0)? Lösung 1. (i) Since (|x| − |y|)2 = |x|2 − 2|xy| + y 2 ≥ 0. (ii) Using the inequality in (i), we find that |f (x, y)| ≤ |x|p−1 |y|q−1 . If p + q > 2, then |x|p−1 |y|q−1 tends to zero when (x, y) → (0, 0) (which means |(x, y)| → 0), so f is continuous at (0, 0). If p + q ≤ 2, we consider f (x, x) = xp+q−2 for x ∈ R. If p + q = 2, then limx→0 f (x, x) = 1; if p + q < 2, then limx↓0 f (x, x) = +∞. So f (x, y) does not converges to zero when (x, y) converges to (0, 0) along the line x = y. We conclude that f is not continuous at (0, 0). (iii) If p + q ≤ 2, then f is not differentiable since f is not continuous. Now we consider p + q > 2. We find that the partial derivatives of f exists at (0, 0): ∂f f (0, y) − f (0, 0) (0, 0) = lim =0 y→0 ∂y |y| 1 ∂f f (x, 0) − f (0, 0) (0, 0) = lim =0 x→0 ∂x |x| For every vector h = (hx , hy ) ∈ R2 , we set ∂f ∂f f (hx , hy ) − f (0, 0) − ∂x (0, 0)hx + ∂y (0, 0)hy |hpx hqy | = R(h) := . |h| |h||h2x − hx hy + h2y | If p + q > 3, then using inequality in (i) and inequality |hx |, |hy | ≤ |h|, we find that R(h) ≤ |h|p+q−3 So we have limh→0 R(h) = 0 and thus the function f is differentiable by Definition 2.2.1. √ If 2 < p + q ≤ 3, then let hn = ( n1 , n1 ), we find that R(hn ) = 22 n3−(p+q) . Suppose that f is differentiable, then it follows from by Lemma 2.3.3 and√Definition 2.2.1 that limh→0 R(h) = 0 and a fortiori limn→∞ R(hn ) = limn→∞ 22 n3−(p+q) = 0, which is absurd as p + q ≤ 3. Therefore f is not differentiable at (0, 0). Übung 2. Berechnen Sie im Folgenden (i) die kritischen Punkte von f (x, y) = y(x2 +y 2 )−2y 2 +1 über x2 +y 2 < 2. Entscheide, ob sie Minima, Maxima oder Sattelpunkte sind. (ii) das Integral Z 1Z 1 p 0 √ x3 + 1 dxdy y (iii) das Volumen der Menge zwischen den Oberflächen x2 + y 2 < z < x2 /2 + y 2 /2 + 1 (iv) das Linienintegral Z (x − y) γ über das Liniensegment von (1, 3) bis (5, −2) (v) ∇ × F und ∇ · F für F = (x2 , 2z, −y). Lösung 2. (i) ∇f = ∂f ∂f , ∂x ∂y = (2xy, x2 + 3y 2 − 4y). The critical points of f correspond to ∇f = 0. They are (0, 0) and (0, 4/3). We next compute the Hessian matrix 2 The Hessian matrix is " Hf (x, y) = 2y 2x 2x 6y − 4 # Its determinant is D(x, y) = 2y(6y − 4) − 4x2 = 12y 2 − 8y − 4x2 . At the first critical point D(0, 0) = 0. So, no statement can be made based on Satz 3.5.5. The function f (0, 0) = 1, and 0 < f (x, y) < 1 on [−0.5, 0.5] × [−0.5, 0.5]. This point is a local maximum. For the other point, D(0, 4/3) = 32/3 > 0 and the first minor 2y = 2 × 4/3 = 8/3 > 0 is also positive. The matrix is thus positive definite and 726F May 2O,2O14 Math Second Midterm by Silvester’s criteria this point is a local minimum. (ii) It is easiest to first change the order of integration (Fubini Theorem). To do this, points) 5.we{Q draw the domain. √ Z 1 p Z 1(u)ffi-,ru* Z 1 Z x2 p Z 1 p the integral 2(2 2 − 1) 2 x x3 + 1dx = x3 + 1 dxdy = x3 + 1 dydx = . √ 9 0 0 0 0 y I,'I**Td'xd'v t /' : [[ffi't -(l*J,|il x-S d* :lx1 w J, 7bv"o ,= , ,rt/' +J, l, \ + 4 g= T' -/o J , Abbildung 1: We: are integrating under the curve. 27 Lt=Xat : ?(rr/=,) *Eits- (iii) We find that the two paraboloids intersect over the circle x2 + y 2 = 2. We can then write 7yz / * dq= Z Z √2 Z √2−x2 √ √ Z Z Y= =tr--xQt=l (u$*>-trN u = r,dzdydx √ √ − 2 − 2−x2 x2 +y 2 x2 /2+y 2 /2+1 I andz:**** 2−x2 ! x2 y 2 + + 1 − x2 − y 2 dxdy 2 2 √ √ − 2 − 2−x2 the ! Z √2solid Z 2π bounded r2 : n2 + y2 ftom by the paraboloids " #√z 2 2 4 r r = 1 from above. 1 − (Hint: rdrdθdraw = 2π a picture.) − =π (b) Compute the volume of below 2 2 2 8 {-L-'* { : xaf o?-Z? €L ; 5 xH-*: '( J:J z-0 0 3 v- I{e' f t .D-(x"oJ 0 #I (iv) The curve can be parametrized as γ = (1 − t)(1, 3) + t(5, −2) = (1 + 4t, 3 − 5t) with t ∈ [0, 1]. The integral then is Z (x − y) = γ Z 1 0 √ 5√ (9t − 2) 16 + 25dt = 41. 2 (v) ∇·F = . ∇×F = ∂F ∂F ∂F + + = 2x ∂x ∂y ∂z ∂F3 ∂F2 ∂F1 ∂F3 ∂F2 ∂F1 − , − , − ∂y ∂z ∂z ∂x ∂x ∂y = (−3, 0, 0), where F = (F1 , F2 , F3 ) = (x2 , 2z, −y). Übung 3. Seien U ⊂ R und f : U × [a, b] → R, c : U → [a, b] C 1 -Abbildungen. (i) Sei G : U × [a, b] → R, (x, c) 7→ Z c f (x, t) dt. a Zeigen Sie, dass G eine C 1 -Abbildung ist. (ii) Zeigen Sie, dass gilt: ∂ ∂x Z c(x) f (x, t) dt = f (x, c(x))c0 (x) + a Z c(x) ∂f a ∂x (x, t) dt. Lösung 3. (i) We start by computing the partial derivatives: The derivative in x, ∂G (x, c) = ∂x Z c ∂f a ∂x (x, t) dt, exists by the ‘Differentiationssatz’, Satz 4.1.1. The derivative in c, ∂G (x, c) = f (x, c), ∂c exists by the fundamental theorem of calculus, Theorem I.10.3.2. Now, the derivative in c is certainly continuous because f is. However, although the derivative in x is guaranteed to be continuous in x by Bemerkung 4.2.2, this result from the notes is not enough to show continuity as a function of two variables. We therefore do it by hand. This will get a bit messy but it is a fairly standard method and is very close to how the Differentiationssatz itself is proved. We will write g(x, c) = ∂f ∂x (x, c) for brevity. 4 Let (x, c) ∈ U × [a, b], and pick > 0. Since U is open and g is continuous, we may use Lemma 4.1.2 or Lemma 4.1.4 to pick δ1 > 0 such that K̄δ1 (x) ⊂ U and, if |x − y| < δ1 , then max |g(x, t) − g(y, t)| < . 2(b − a) t∈[a,b] Again using continuity, specifically Korollar 1.10.3 and Korollar 1.11.1, let 0 ≤ M := max{|g(y, t)| : |y − x| ≤ δ1 , t ∈ [a, b]} < ∞. Now pick δ2 = /(2M ) if M 6= 0, or just if M = 0. Let δ = min(δ1 , δ2 ) and (y, d) ∈ U × [a, b] be such that |(y, d) − (x, c)| < δ. Certainly |x − y| < δ1 and |c − d| < δ2 . We estimate as follows (using the triangle inequality and properties of integrals) Z d Z d Z c Z c Z c Z c g(x, t) dt g(y, t) dt − g(y, t) dt + g(y, t) dt − g(x, t) dt = g(y, t) dt − a a a a a a Z c Z d |g(x, t) − g(y, t)| dt g(y, t) dt + ≤ a c ≤ |c − d| max |g(y, t)| + (c − a) max |g(x, t) − g(y, t)| t∈[a,b] t∈[a,b] < M+ (c − a) ≤ , 2M 2(b − a) and we are done. So, the partial derivatives of G in both x and c exist and are continuous, and so G is in C 1 . (ii) Let F : U → R, x 7→ Z c(x) f (x, t) dt. a We are going to show that F is differentiable with the derivative given in the question. Define h : U → U × [a, b], x 7→ (h1 (x), h2 (x)) := (x, c(x)). The function h is differentiable because its components are (Satz 5.1.3). The ‘Hauptkriterium für Differenzierbarkeit’, Satz 2.6.2, tells us that G is differentiable because each of the partial derivatives is continuous (as a function of two variables). We observe that F = G ◦ h. The chain rule, Satz 5.3.1, tells us that F is differentiable, as the composition of two differentiable functions, and even gives us its derivative: ∂G ∂G F 0 (x) = (h(x))h01 (x) + (h(x))h02 (x) ∂x ∂c Z c(x) ∂f = (x, t) dt + f (x, c(x))c0 (x). ∂x a 5 This completes the proof. Notice that we got for free from the proof that F is a C 1 function. Also, the proof would work just fine if we had U ⊂ Rn and replaced all x-derivatives with a partial derivative with respect to xi , or some directional derivative. Übung 4. Berechnen Sie das Taylorpolynom bis zur zweiten Ordnung zu den im folgenden gelisteten Funktionen, mit x = (x1 , x2 , ..., xn ) und x0 = (x1,0 , x2,0 , ..., xn,0 ), x, x0 ∈ Rn . Schätzen Sie das Restglied Ra2 f (x) = f (x) − Ta2 f (x) unter Verwendung der “klein-o” or “groß-O” Notation ab: i) f1 (x) = x1 − x31 − x42 in x0 = (−1, 0) ii) f2 (x) = (ex1 + e−2x1 ) sin(2 x2 ) in x0 = (0, π) iii) f3 (x) = cos(2 x1 + x2 ) + sin(x1 − x2 ) in x0 = (π, π) Lösung 4. The Taylor polynomial up to second order reads 1 Tx20 f (x) =f (x0 ) + h∇f (x0 ), (x − x0 )i + (x − x0 )T Hf (x)|x=x0 (x − x0 ) , 2 see Bemerkung 3.4.1 in the script. H is the Hesse matrix. In component notation and for x = (x1 , x2 , ..., xn ) and x0 = (x1,0 , x2,0 , ..., xn,0 ), so x, x0 ∈ Rn , it reads Tx20 f (x) =f (x0 ) + + 1 2 n X ∂ i=1 n X n X ∂xi f (x)|x=x0 (xi − xi,0 ) ∂2 f (x)|x=x0 (xi − xi,0 )(xj − xj,0 ) ∂xi ∂xj i=1 j=1 (1) Use Korollar 3.4.2 to estimate its remainder Ra2 f (x) with f ∈ C 3 (Ω) and Ω ⊂ Rn . i) Here, x = (x1 , x2 ) and x0 = (−1, 0) and x, x0 ∈ R2 . Computing all partial derivatives of Eq. (1), we get ∂ ∂ f1 (x)|(−1,0) (x1 + 1) + f1 (x)|(−1,0) (x2 − 0) ∂x1 ∂x2 1 ∂2 1 ∂2 2 + f (x)| (x + 1) + f1 (x)|(−1,0) (x1 + 1)(x2 − 0) 1 (−1,0) 1 2 ∂x21 2 ∂x1 ∂x2 1 ∂2 + f1 (x)|(−1,0) (x2 − 0)2 2 ∂x22 2 T(−1,0) f1 (x) =f1 (−1, 0) + =0 − 2(1 + x1 ) + 3(1 + x1 )2 = 1 + 4 x1 + 3 x21 6 and the remainder is 2 2 R(−1,0) f1 (x) = f1 (x) − T(−1,0) f1 (x) = −(1 + 3 x1 + 3 x21 + x31 + x42 ) , so we have f1 (x) = 1 + 4 x1 + 3 x21 + O(|(x1 + 1)3 + x42 |) . ii) Computing each term of Eq. (1) and collecting all results, one finds f2 (x) = −2(x1 − 2)(x2 − π) + O(|(x1 , x2 ) − (2, π)|3 ) . iii) To get a simpler calculation of the derivatives, the function can be written as f3 (x) = cos(2 x1 + x2 ) + sin(x1 − x2 ) = cos(x1 )2 cos(x2 ) + cos(x2 ) sin(x1 ) − cos(x2 ) sin(x1 )2 − cos(x1 ) sin(x2 ) − 2 cos(x1 ) sin(x1 ) sin(x2 ) . Again, we can expand the two functions independently and collect the terms up to the second order. One finds 1 f3 (x) = −1 + x1 − x2 + (2 x1 + x2 − 3π)2 + O(|(x1 , x2 ) − (π, π)|3 ) . 2 Übung 5. Sei f : R → R eine C 1 -Funktion, so dass |f 0 (t)| ≤ k < 1 für t ∈ R. Betrachte die Funktion ϕ : R2 → R2 , (x, y) 7−→ (x + f (y), y + f (x)). Zeigen Sie, dass ϕ ein Diffeomorphismus ist. Lösung 5. Since f and ϕ are functions of class C 1 , the Jacobian matrix of ϕ is given by Jϕ(x, y) = 1 f 0 (y) 0 f (x) 1 ! . We observe that Jϕ(x, y) is invertible since detJϕ(x, y) = 1 − f 0 (x)f 0 (y) ≥ 1 − k 2 > 0; Therefore, the inverse function theorem (Satz 5.6.1.) implies that ϕ is a diffeomorphism in the neighborhood of every point (x, y) ∈ R2 . To prove that ϕ is a diffeomorphism from R2 to R2 , it is enough to show that ϕ is a bijective function. Because in a neighborhood 7 of any point local and global inverse must coincide. We take (u, v) ∈ R2 . Then, the value of (x, y) ∈ R2 such that ϕ(x, y) = (u, v) is determined by the relationship y = v − f (x) and u = x + f (v − f (x)). Consider the function g(x) = x − f (v − f (x)) for x ∈ R. Clearly, g is a function of class C 1 and its derivative is given by (we apply the chain rule) g 0 (x) = 1 − f 0 (v − f (x))f 0 (x). Moreover, we have that g 0 (x) ≥ 1 − k 2 > 0 from our assumption over f . Thus, g is a bijective and strictly increasing function from R to R. Hence there exists a unique x ∈ R such that g(x) = u, and therefore a unique (x, y) ∈ R2 such that ϕ(x, y) = (u, v), which prove the bijectivity of ϕ. 8