Quad Answers Take Home
Transcription
Quad Answers Take Home
Quadratics Take Home Eue January 3L,2OL4 L. The equation rJ =F+ 3x - lS in gratrrhed $n ttre set odsres belcna* Brrsed u:r this graph, rvhat sre the ronts af the equation#+5x-18:0? {I} -$snd6 d2l 0and-tr8 @ s and.-{ t4:l s snd-trS 2. lHhat a,re the nertes cnd srls of syrnnlehl,' of tLe prrabola sha,*"n in the diagrem beisnv? (I,-a); u;is of,strT nruet-ry-: x = I ts) $erteli: (1,a): atix of $rrfimetfi'; x: -4 @ vm-tex: t3} l.erter: {-4.11: mfs nf R.rnme[r1': {43 l.ertesr i-4,I1: ru;is.uf synrnretrl: r= r : -4 tr. 3. The height, E, of a batrl tossed into tlr,e air rtrl be represented by the equation g : -# + 10x + 3. $rhere x is th* elrysed tinie. lffhat is tlie equaticu of the a:cis y:5 ts) y: -s {r} uf'ry'rnnnehy nf this parabalaP @ Sr:: S {.t I fr: -D 4. { $Arirn tearn nnemb,er perfonns a dive from a -fuct-high spriagbnard. The parab,ola belorv *ows rbe path of her dir,e, aE _E r F'r & a4FB10 trfirtrnca frqnr Etrlngboard thstl equation Xrtlhicih ec @ {g} rrpresents tlre aliis of tyn'rrnetrvP *:s {3} x: X.3 (a) y=23 s: s 5. '--*dhicb' is an equntian of the parnbola shown in the ncconrpmrl,i:r g diagrur rn F s:-f -2.-+3 tlt=#-g*+s 'yr=#*l:+3 @; =4+l.-+3 tl) pL av JaJ'' f,+ The dingrarn belmr rbmm the grapb of$ l4lhich ftagrarn shmlrth*E*pltnrfy: fire : -d - s. # -c7 ,nf a parnbola is representecl by the -Eaph eqrrati(}n I/ = c.rZ tr{rere a is a prsitive infeger. lf n is rrutrtipherl h, Z, ttre nerv parabola lvill become i I.i tr.rn-or.rer: @ nttt**er nr*crpen danrnrvirrcl anrl upen upwar<l tS) wider anrl open eloumrvard i4) wlder and open uprvard 5TANDARD FORM TO VERTEX FORM f(*)= x2 +?x e (*)13- 9. f (*)= -3 * rzr' r *r+il)t ftq*** i\t = s"? Sn:n { ":ffJl}l ft^) = (x rr)? 10. f (*)=?x2 +t?x -'{ +5x FC +3 s r€ +Er' $*o**#f Grrl tL l u (t3+br *(,),) rs c4 = Az-*tBI t+,r= = t(-F) ' -t4 r Lr.E t ra y € Ccn)* r4t z(P-) -3 t^ fil= ("nE)'*? FO.l + t,'| Fc^) + 14 + x? L({fi}7'zz VERTEX FORM TO 5TANDARD FORM Lt. f (*) =- (x+3)'+1 - (xl**ptt) + | Cc*1 * -K? - dor-Q {--f _C6x;= ^lta *"&f - B r(*)=z(x -s)' -z Se$ r, ?- { 5a*A** q Lz. ) *b Flir:. t /? " t?'rtI#-& = 7t -r?-F f lb ^l 13. The porent groph of o porobolo hqs undergone the following trcnsformotions. Stote the eguotion of the new porobolo. o) Shifted left 2 down 3 ond reflectedover the x oxis. b) Shifted right 3, up 2 and diloted by o foctor of c) Shifted left 3, up 5,dilqted by 2. r.t= Il- - CX+e)1 -3 ffiEs)ufl- t ond reflected over the x qxis. -+&*3) Shifted up 2 ond diloted by 4 4K} +L *5 6RAPHIN6 QUADRATIC FUNCTTON5 14. f,?\ Given f (*) =3xz - 6x + L o. Find the oxis of /T symme{ry X=":b= . ke ztub b. Find the vertex ; *.ef.? "t*& Yo"' . : t t aplrFl*-+ d1^r_ ^r') {,Cq=3U}*-bill. u q'r ft) c. 6roph f *\ I I : ; l*). ' : d. Evoluqt" f^[tl _ KiJ= "t.' y' Statethezeros. f. o. - State the Stote the y-intercePt. D: C-* ea lrL'. tz,a ) x €,1) hFndF:,ff;Fm \O a-\ ?. &, 0 \ X";:.'' L ? i4 Lfb = *n Klry€ i) Find thezeroes round'to thenearest fhousandfh '{=. domoin ond Range. 3 It /F' - t- --- -:1 a -; K; z"lb --'F \, $lb 4 '-'l 4 r/= N tY4t-lI P,V I 6"2 I t0 15. .liven f (*) = 2(x = l)a - 3 o. Find the axis of symmetry ,*f) K3 l 'I b. Find the vertex. , , _V (r ,-3) c. 6roph d. .:'-- -t : I f(*). Evqluqte f (t). Vcrt * :3 q/. stot"the zeros. / l. ,*r" the y-intercept. \ 9. Stote the domoin ond ronge. b'-) f h. Find the EXACT zeroes 0 -- ' Q* C**l )'- 3 e -- z C*l)Z- €\6 (-r F_ = ( *= Li '[i, -l -? -l 5 ry. i) Find thezeroes round to the nearest thousandth "'tI l I t t= l- ry /= -.r12{ (= tug y= 2,zg of the root. Compute the discriminqnt ond state the nqture o. | =-2x2 +4x+3 b. b? - 4a-e' . +2-_+ \ b { zu\:-*o t*F/ o'rcal * re*[ rffattOnal t7. Solve for the EXACT roots using completingthe sguqre. y =(x-l)z +2 o. ! =-2x2 +4x+3 L{ *3 v = -ut'L {*,b/ . 1-3 * -L c*-LF ) o it*L(-l)? =*v(* *zs*htl 5 -5 = -l ( x-t)z -S r--" z L* Y', 18. f& )t*)i' i ^')t = x-f o r-J* -l), * f.r -r\Z Solve to the neorest thousqndfh using the guodrotic formulo' b. o. ! =-2x2 +4x+3 y =(x-L)z +2 6z,)ac z ,' Kq *r$g I XstrltB o Al rea- t l'lb , t'o